Designing Thermochromic Thermometers

Project 1, Session 2
Pre-Lab Worksheet

All work must be well-written and organized. If your penmanship is poor, you must type all responses. If you need to organize your thoughts, please use a separate sheet of paper.
Question 1 (5 p)   Page 4 of the Project 1 Guide v2.8 gives the Van’t Hoff equation:
ln??K_C= -(?H^o)/R?  1/T+(?S^o)/R
Sketch a plot of ln(Kc) vs. 1/T for this equation. Title the plot and label the axes correctly. Clearly indicate how you will find the standard enthalpy (?Ho) and standard entropy (?So) from this plot. Assume ?Ho > 0 and ?So > 0.

What are the units for ?Ho and ?So?

Question 2 (5 p)   Depending on the sign of the standard enthalpy and entropy (?Ho and ?So) there are four possible ln(Kc) vs. 1/T plots. Sketch the four possible ln(Kc) vs. 1/T plots below. Label the axes correctly for each plot. Indicate which plot you expect for Task 3.

YOU MUST READ THIS GUIDE BEFORE ARRIVING IN LAB.  The lab will
be run   with the assumption that  you have completed all the reading.
FAILURE  TO  READ  THE  MATERIAL  BEFOREHAND  WILL  RESULT  IN
NEEDLESS CONFUSION AND FRUSTRATION IN LAB.
The central goal of this three-session   project is to explore and learn
how to control the behavior of a chemical system  in order  to design
thermochromic  thermometers  that  change  color  at  specific
temperatures. With   this type of thermometer, temperature changes
induce chemical processes that lead to new chemical substances that
differ in color. In this particular project, you will work to control the
extent of chemical reactions involving colored cobalt (II) complexes.

P1- 1 Background
A chemical system exhibits thermochromic behavior when its color changes over a temperature range. You may
have  observed  this  phenomenon  in  products  such  as  mood  rings,  baby  bottles  that  change  color  when  the
contents are cool enough to drink, or actual thermometers used to measure water temperature in aquariums or
body temperature by placing them on the forehead.
Most  commercial thermochromic  systems  use  chemical  substances  that  exhibit  liquid  crystal  behavior  and
reflect  light  of  different  wavelengths  as  molecules  adopt  different  arrangement s  when  the  temperature
chan ges. Some coordination  metal complexes also exhibit thermochromism.  Such systems can serve as the basis
of relatively simp le , inexpensive   thermochromic thermometers.
Coordination complexes are made up of  a central  atom or ion (usually metallic) with
a surrounding array of bound molecules or ions, known as  ligands . The number of
ligands determines the molecular geometry of the com plex. For example CoCl 2(NH
3
)
4

has  an  octahedral  shape,  while  CoCl 2(NH
3
)
2
has  a  square  planar  geometry  (see
illustration s  to  the  right).  In  these  examples,  Cl
–  ions  (green)  and  NH3
molecules
(blue/white)  act  as  ligands  to  the  Co
2+
metal  ion (grey)  in  the  center  of  the
coordination complex.
The types and number of ligands affects the energy states accessible to electrons in
the coordination complex and thus determine the system’s color. For example,
octahedral  complexes  (6  ligands)  of  Co
2+
frequently  have  a  pinkish  color  while
square -planar   c omplexes  (4 ligands) tend to be  bluish.
When cobalt (II) chloride (CoCl 2
) is dissolved in methanol ( methyl alcohol, CH3OH,
MeOH),  it  forms  octahedral  complexes  with  the  formula CoCl 2
(MeOH)
4
.  However,
when CoCl2
is dissolved in other alcohols (Alc), such as ethanol, the most common
complexes are square -planar:   CoCl 2
(Alc)
2
. This suggests that one can control the color
of  CoCl2
alcoholic  solutions  by  controlling  the  extent  of  chemical  reactions  of  the
type:
CoCl 2
(Alc)
2
+     4 MeOH   ?    CoCl 2
(MeOH)
4
+    2 Alc

Blue

Pink

CoCl 2(NH 3) 2  (Square Planar)

CoCl 2(NH 3) 4  (Octahedral)
Chemical Thinking  Project 1   v2.8   |  2
P1 v2.8  8 -22-15 MY

According  to  this  equation,  if  you  have  a  blue  solution  of  CoCl 2
(Alc)
2
and  add
colorless  methanol  (MeOH),  the  equilibrium  will  shift  to  the  right,  forming  more
CoCl 2
( MeOH)
4
.  Hence,  as  the  amount  of  MeOH  is  increased,  the  solution  should
transition   from  blue   to purple   and then go pink .  Notice , in theory   the equilibrium
may  be driven back to the left   by   adding Alc (which is also colorless) so the  pink
solution should return to blue .
The extent of this  cobalt -alcohol reaction  also   depends   on the system temperature.
For example , if the reaction is exothermic  increasing the temperature should favor
formation of the reactant  CoCl 2
(Alc)
2
and the chemical system would become more
bluish.
In   P roject   1  we will  focus  on the  behavior of  CoCl 2
(Alc)
2
complexes  in  which  the
alcohol (Alc) is ethanol or   isopropanol. Common abbreviations for these alcohols are
EtOH for ethanol and iPrOH for isopropanol.  Hence, CoCl 2
(Alc)
2
solutions   of ethanol
and isopropanol will be referred to as  CoCl 2
(EtOH)
2
and  CoCl 2
(iPrOH)
2, respectively .
To take advantage of reaction s such as:
CoCl 2
(Alc)
2
+     4 MeOH   ?    CoCl 2
(MeOH)
4
+    2 Alc

Blue

Pink

in the design of thermochromic thermometers we need to explore how the chemical nature of the alcohols,
their concentrations, and  the temperature of the system a ffects chemical equilibria. Developing this knowledge
and applying it to the design of thermochromic thermometers are the central challenges of Project 1 .
When studying  chemical equilibria   a good starting point is to determine   the equilibrium constant ( K c
).  To better
unders tand   K c, consider the   generic balanced  chemical equation:
aA   +   bB   ?    cC    +   dD
Reactants       Products
where  the capital letters represent chemical formulas of the reactant s   and products and  the  lower   case letters
are the stoichiometric coefficients   ( the numbers in front of the chemical formulas) . As indicated, the reactants
are on the left, the products on the right.   For this generic balanced  chemical equation , the equilibrium constant
expression is written:
?
?
=
[ ? ]
?
[ ? ]
?
[ ? ]
?
[ ? ]
?

Here  the   brackets  signify  molar  concentrations   of  the  reactant  or  product  enclosed  by  the  bracket.   From
Equation  3 ,  we  see  that   K c
is  the  ratio  of  the product  molar  concentrations  raised  to  their  stoichiometric
coefficients   over   the  reactant   molar concentrations  raised to their stoichiometric coefficients .  So clearly, if the
reactant molar concentrations are greater  at equilibrium   than the product molar concentrations ,  Equation 3
predicts  K c
should be smaller than when the  product molar concentrations are   greater than the reactant molar
concentrations.
Now let’s apply this to the cobalt-alcohol system of  Equation  1 . In this case t he equilibrium constant  expression
is :
?
?
=
[ ????
2
( ???? )
4
] [ ???]
2
[ ????
2
( ???)
2
] [ ????]
4

Methanol (CH4
O)
(MeOH)
Ethanol (C2 H6
O)
(EtOH)
Isopropanol (C
3H 8
O)
(iPrOH)
Equation 3
Equation 4
Equation 2
Equation 1
Chemical Thinking  Project 1   v2.8   |  3
P1 v2.8  8 -22-15 MY

Take a look at  Equation 1. Let’s assume the equilibrium strongly favors the product side. Would  you  expect  K c
to
be large or small? From  Equation  1 , if the equilibrium  strongly  favors the product s , then [ CoCl 2
(MeOH)
4
][Alc]
2
>
[CoCl2
(Alc) 2
][MeOH]
4
, so that  Equation 4  predict s   a large K c
( K c
> >   1). Notice the reverse would be true  if the
equilibrium strongly favored the reactant side  –   namely K c
would be small ( K c
< <   1). Hence, the  magnitude of  K c

affords   some insight as to where the equilibrium lies.
Can the  equilibrium constant ( K c
)  be negative? Why or why not?
From Equation 4, you also  see that  to calculate   K c
the equilibrium concentrations of  all   the  species in the system
must  be  known.  In  this  project  you  will  not  have  to   measure  or  determine  all  these  concentrations,  as  a
spreadsheet has been prepared for you that will calculate   K c
once the  concentration   of CoCl 2
(Alc)
2
is   found .  So
how  do  you  find  [CoCl 2
(Alc)
2
]?  Since  the cobalt  complexes are colored,  this task  can  be  accomplished  using
visible  absorbance  spectroscopy.   You  know  from  CHEM  151  that   abso rbance  spectroscopy  involves  a
mathematical relationship between absorbance and concentration called Beer’s Law, A = elC ,  in which  e  is the
molar absorptivity and l  is the path length. The path length is always 1.00 cm for the cuvettes we use in lab and
the molar absorptivity  at ?max  = 656 nm   of CoCl 2
(EtOH)
2
is 170 cm
– 1
M
– 1
, while that of  CoCl 2
(iPrOH)
2
at ? max
= 656
nm  is 319   cm
– 1
M
– 1
.  So , the molar concentration  at equilibrium  of the  CoCl 2
(Alc)
2
complexes can be  found .  Let us
call this C eq
.  Once this value is known, you can use the Excel file  Project 1  Task 2   to find  K c
.
Should the equilibrium constant (K c
) be independent of the initial concentr ation of the different species? Why?
P1- 2 Your Challenges
In  Project 1  you are expected to  explore the behavior of reactions of the type:
CoCl 2
(Alc)
2
+    4 MeOH   ?    CoCl 2 (Me OH)
4
+    2 Alc
w ith  the objective of  understand ing  how to control the chemical equilibrium and  how  such   processes   may
be  used  to  design  thermochromic  thermometers  that  change  color  at  a  specific  temperature .  To
accomplish  this ,  the following  four   major tasks must be  complete d:
Task 1
Objective :  Qualitatively  explore the thermochromic behavior of   cobalt alcohol solutions (CoCl 2
(Alc)
2
) with
methanol.
Prepare  CoCl 2
(EtOH)
2/MeOH  in  various  ratios  between  2:1 to 4:1  ( CoCl 2
( EtOH)
2
to  MeOH)  and
observe  the  color  at  room  temperature  and  when  placed  on  ice.  Do  likewise  for
CoCl 2
( iPrOH )
2/MeOH.
Expected outcome :  A  qualitative feel for the behavior of the cobalt alcohol complexes with methanol  at
different temperatures.
Resources:
x  20 mL  of 0.0101   M CoCl 2(EtOH) 2  stock solution   –  use a 20 mL vial  &   cap to control evaporation ;  NO BEAKERS!
x  20 mL of 0.0103   M CoCl 2(iPrOH)2  stock solution   –  use a 20 mL vial  &   cap to control evaporation ;  NO BEAKERS!
x  20 mL of Methanol   –  use a 20 mL vial and cap to   control evaporation and spills;  NO BEAKERS!
x  20 –  200 µL  micropipette  (hanging on the micropipette station attached to the islands)
x  100  –  1000 µL micropipette  (hanging on the micropipette station attached to the islands)
x  200 µL pipette tips (for the 20-200   µL micropipette)
x  1000 µL pipette tips (for the 100-1000 µL micropipette)
x  Contents of your shared locker (see the locker inventory sheet and photo on D2L )
You will have 30 minutes  to complete this task. Use your notebook to clearly record and describe the  work
you are performing and the associated results.
Chemical Thinking  Project 1   v2.8   |  4
P1 v2.8  8 -22-15 MY

Task 2
Objective :  Determine  the average value of  K C
at room temperature   for chemical reactions involving cobalt
alcohol solutions (CoCl 2
(Alc)
2
) with methanol.
a)   Prepare CoCl 2
(EtOH)
2
/MeOH in ratio s between  2:1   to 4:1  ( CoCl 2
( EtOH)
2
to MeOH).  Do likewise for
CoCl 2
( iPrOH )
2/MeOH.  You will have to decide how many ratios to prepare.
b)   Using  absorbance  spectroscopy  determine  the  molar  concentration  of  CoCl 2
(EtOH)
2
or
CoCl 2
(iPrOH)
2
for the ratios prepared above.
c)   Using the Excel file  Project 1   Task 2   v1.1   to find  K c
for each prepared ratio.
Expected outcomes:  You should be able to determine  the  equilibrium   constant  K c
at room temperature
for  CoCl 2
(EtOH)
2
and CoCl 2
(iPrOH)
2
with MeOH at various ratios.
Resources  (In addition to items listed in Task 1 ) :
x  5 mL of Ethanol  –  only for zeroing the spectrometer ;  NO BEAKERS!
x  5 mL of Isopropanol  –  only for zeroing the spectrometer ;  NO BEAKERS!
x  USB650 absorbance spectrometer with USB cable (one  per group)
Detailed  operating  instructions  for  the  USB650  absorbance  spectrometer  are  given  in   Absorbance
Spectroscopy  with Logger Pro  v2.5   technical guide  on  D2L.  This   information is  not available in  lab, so bring
either  a hard or electronic copy .
You will have  the rest of the  lab session to complete  Task 2 .  Use your  notebook to clearly record   and
describe the work you are performing and the  associated results.

Task 3
The equilibrium constant ( K C
) should be independent of the initial concentration of the different species.
However, it may be affected by the temperature of the system. The relationship between K c
and  T  (in
Kelvins) is given by   the   Van’t Hoff equation:
ln ?
?
=   –
? ?
?
?
1
?
+
? ?
?
?

?       =          ??      +   ?
where  ‘H
o
and  ‘S
o
are the standard enthalpy  and   entropy change of the reaction, respectively, and  R   is
the ideal gas constant ( R   = 8.314 J/(K ·mol)). Th is relationship   suggests   that the value   of ‘H
o
and  ‘S
o
may
be derived experimentally  using K c
values  at different temperatures   T .  This can be done by plotting ln(Kc
)
versus 1/T to prepare a  Van’t Hoff plot   which should result in a straight line with slope m = -‘H
o
/R and y -intercept b =  ‘S
o
/R.
Objective:  Infer   the   values of  ‘H
o
and  ‘S
o
for chemical reactions involving  CoCl 2
(EtOH)
2
with MeOH  and
CoCl 2
(iPrOH)
2
with MeOH.  In  particular,  f or CoCl 2
(EtOH)
2/MeOH  and  CoCl 2
( iPrOH )
2/MeOH  you  are
expected to find values for ‘H
o
and  ‘S
o
by determining K c
at different temperatures.
a)   Prepare CoCl 2
(EtOH)
2/MeOH in ratios between 2:1 to 4:1   ( CoCl 2
( EtOH)
2
to MeOH) and determine
K c
for each preparation as a function of temperature T . Do likewise for  CoCl 2
( iPrOH )
2
/MeOH.
b)   Using  the Excel  file  Project  1   Task 3   v1.1   to  find K c
as  a  function  of  temperature  T   for  each
prepared ratio.

Chemical Thinking  Project 1   v2.8   |  5
P1 v2.8  8 -22-15 MY

c)   From the Excel spreadsheet output, work-up the  K c
versus  T   data to determine  ‘H
o
and  ‘S
o
for
CoCl 2
(EtOH)
2
/MeOH  and  CoCl 2
(iPrOH)
2
/MeOH.  (Hint,  this  will  involve  constructing  a  Van’t Hoff
plot. )
Expected outcomes:  ‘H
o
and  ‘S
o
values for  CoCl 2
(EtOH)
2
/MeOH and CoCl 2
(iPrOH)
2
/MeOH ratios  that can
be analyzed for trends.
Resources  (In addition to items listed in Task 2 ) :
x  Ice Melter (used to depress the freezing point of ice; on the  reagent bench )
x  Plastic transfer pipettes   (on the reagent bench)
x  Plastic ice bowls (only 1 per student; the ice machine is located in the hallway)
x  Vernier surface temperature sensor with Go!Link interface and cap to align sensor tip in a cuvette (digital
te mperature probe for measuring temperature of the solution in a cuvette)
x  Go!Temp digital thermometers (for monitoring bath temperatures only)
Measurements of absorbance at different temperatures can be systematized using this procedure:

1)   Set-up Logger Pro  to collect absorbance and temperature co nc urrently for 100 seconds at 1
second intervals.
2)   Load  4  mL of the reaction mixture into a 2-dram (7   mL) screw cap glass vial.
3)   Chill in an  “Ice Melter”   ice bath for 5 -10 minutes.
4)   Quickly transfer via disposable pipette enough chilled solution to fill t he cuvette ¾ full ( ˜  3 mL ).
5)   P lace cuvette in spectrometer .  Immediately insert   surface temperature probe .
6)   Monitor temperature display on Logger Pro window –  in itiate data collection when the
temperature appears  to hit a minimum .
7)   Migrate data to Excel for work up.

Concurrent Capture of Absorbance and Temperature v2. 1   gives d etailed operating instructions  for the
USB650 absorbance   spectrometer  with the  Vernier surface temperature sensor. The  document is on D2L.
This information is not posted in lab, so bring a copy.
You will have one lab session to complete this task. It is critical that you have   a plan  for  acquiring   the data
you need . As you work in the lab, use your notebook to clearly  record   and describe the work  performed
and  the associated results.

Task 4
In  the final phase of this project you are expected to apply what you have learned in the previous two
sessions  to design an inexpensive, self -contained, disposable thermochromic  thermometer   that change s
color  at a  specific  temperature. In  particular,  you  should  design  a  thermometer  that  can  be  used  for
quality control of products that should never be exposed to temperatures below freezing  (or around 2
o
C,
the temperature of a wat er -ice mixture),  such as refrigerated blood samples in blood banks or vegetables
in supermarket storage units .
Resources:
You will have access to the same resources that were available  in previous  session s   to complete Task 4 .
You  are  expected  to  explore  the  properties  and  behaviors  of  different  reaction  mixtures  using  your
previous  experimental  results  to  guide  the  process.   To  assist  in  performing  a  cost  analysis,  a  table  of
material cost follows:

Chemical Thinking  Project 1   v2.8   |  6
P1 v2.8  8 -22-15 MY

Thermochromic Thermomete r  Material Costs for Task 4

This information can be used to guide your thermochromic thermometer design to meet the “inexpensive”
criterion.
P1- 3 Preparatory Tasks
This project requires you to work  with a partner . You are not expected to personally conduct  all the lab work;
rather, you and  partner  should coordinate efforts to successfully complete the project .  The two of you  will be
responsible for monitoring time.  It is important that you develop a clear plan of action before starting any
experimental work. You should come pre pared with ideas about how to implement the  experiments that will
help you meet the  tasks given the resources available to you.
In this project you will employ a number of te chniques/procedures. Before arriving to  lab it is very important
to review the  technique   guides . In particular, you should:
x  Task 2 :  Understand how to use a spectrometer for taking  absorbance readings (Absorbance Spectroscopy
with Logger Pro  v2.5   technical   guide  on D2L ).
x  Tasks 1 -4 : Learn  the proper use of a micropipette   (Micropipette v2.5  technical   guide  on D2L ) .
x  Task   3 :  Be able to capture temperature and absorbance  data simultaneously   in a small volume of solution.
( Concurrent Capture of Absorbance and Temperature v2.1  technical   guide  on D2L ).
Make sure that you:
x  Review the technical  guides. You  are  expected  to know  how  to  properly  use  the   lab  equipment
without too much reliance on your TA.
x  Don’t forget to complete the P re -L ab Quizzes in D2L (one every session) .
x  Don’t forget to submit (lab D2L Dropbox)  the  P re -Lab Worksheet s  before   lab  (one every session) .
Things to bring to lab :
x  A hard copy or an electronic copy of  the:
o   Project   1  Guide  v2.8  (this documen t)
o   Pre-Lab Worksheet (one for each session: P1S1, P1S2, P1S3)   –  MUST BE COMPLETED BEFORE LAB!
o   In -Lab  Report   (one for each session: P1S1, P1S2, P1S3)
o   Absorbance Spectroscopy with Logger Pro  v2.5   technical guide  (For  Task 2)
o   Micropipette v2. 5  technical   guide (For all  Tasks)
o   Concurrent Capture of Absorbance and Temperature   v2.1  technical   guide  (For  Task 3 )
o   Excel spreadsheets:   Project 1 Task 2  v1.1 ( for Task 2   only),  Project 1 Task 3  v1.1 (for Task 3)
x  A  laptop  computer  with  Excel  (to facilitate  the  analysis  of  the  data)   and  Logger  Pro  (to  directly
collect  data  from  a  USB650  spectrometer  and  the  Vernier  temperature  sensor s ).  The  lab  is  NOT
equipped with computers for student use.
Material  Cost
1- Dram vial + cap  $0.29 each
2- Dram vial + cap  $0.19 each
20 mL Plastic vial + cap  $0.18 each
15 mL Centrifuge tube + cap  $0.24 each
0.01 01  M CoCl 2
(EtOH)
2
$58.11 per liter
0.01 03  M CoCl 2
(iPrOH)
2
$36.38 per  liter
Methanol   $38.48 per liter
Ethanol  $57.28 per liter
Isopropanol   $35.55 per liter
1” Parafilm square   $0.02 each
Tape   $0.08 per meter